Multi-represented Classification Based on Confidence Estimation
نویسندگان
چکیده
Complex objects are often described by multiple representations modeling various aspects and using various feature transformations. To integrate all information into classification, the common way is to train a classifier on each representation and combine the results based on the local class probabilities. In this paper, we derive so-called confidence estimates for each of the classifiers reflecting the correctness of the local class prediction and use the prediction having the maximum confidence value. The confidence estimates are based on the distance to the class border and can be derived for various types of classifiers like support vector machines, k-nearest neighbor classifiers, Bayes classifiers, and decision trees. In our experimental results, we report encouraging results demonstrating a performance advantage of our new multi-represented classifier compared to standard methods based on confidence vectors.
منابع مشابه
Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملارائه یک روش جدید دو مرحله ای جهت تخمین هوشمند سن افراد
Intelligent age estimation via face images has become an important research topic in machine vision and pattern recognition fields because it has a key role in many applications such as customer behavior analysis in a business intelligence system. Age estimation is a process which analyses an individual face image and estimates his/her age based on the year measure. The age estimation process ...
متن کاملConfidence Estimation for Graph-based Semi-supervised Learning
To select unlabeled example effectively and reduce classification error, confidence estimation for graphbased semi-supervised learning (CEGSL) is proposed. This algorithm combines graph-based semi-supervised learning with collaboration-training. It makes use of structure information of sample to calculate the classification probability of unlabeled example explicitly. With multi-classifiers, th...
متن کاملDistribution Free Confidence Intervals for Quantiles Based on Extreme Order Statistics in a Multi-Sampling Plan
Extended Abstract. Let Xi1 ,..., Xini ,i=1,2,3,....,k be independent random samples from distribution $F^{alpha_i}$، i=1,...,k, where F is an absolutely continuous distribution function and $alpha_i>0$ Also, suppose that these samples are independent. Let Mi,ni and M'i,ni respectively, denote the maximum and minimum of the ith sa...
متن کامل